

| Date Planned ://             | Daily Tutorial Sheet-3 | Expected Duration : 90 Min |
|------------------------------|------------------------|----------------------------|
| Actual Date of Attempt : / / | Level-1                | Exact Duration :           |

**31.** Select correct statement about the reaction :  $NH_4NO_3 \longrightarrow N_2 + 2H_2O$ 

(A) Oxidation number of N has changed from -2 to +0

(B) Oxidation number of N in  $NH_4^+$  changed from -3 to 0 and that in  $NO_3^-$ , changed from +5 to 0.

(C) Oxidation number of N in  $NH_4^+$  changed from +1 to 0 and that in  $NO_3^-$  changed from +5 to 0.

(D) No change

**32.** Which is not a disproportionation reaction?



(A)  $3H_3PO_2 \longrightarrow 2H_3PO_3 + PH_3$ 

**(B)**  $2HCHO + OH^- \longrightarrow HCOO^- + CH_3OH$ 

(C)  $NH_4NO_3 \longrightarrow N_2O + 2H_2O$ 

(D)  $2Cl_2 + 6OH^- \longrightarrow 5Cl^- + ClO_3^- + 3H_2O$ 

**33.** Equation  $H_2S + H_2O_2 \longrightarrow S + 2H_2O$  represents :

(A) Neutralization reaction and acidic nature of  $H_2O_2$ 

(B) Neutralization reaction and basic nature of  $H_2O_2$ 

(C) Redox reaction and oxidising nature of  $H_2O_2$ 

**(D)** Redox reaction and reducing nature of  $H_2O_2$ 

**34.** In which of the following transformations, oxygen is not the reducing agent?

(A) 
$$Ag_2O \longrightarrow 2Ag + \frac{1}{2}O_2$$

**(B)** 
$$4NH_3 + 3O_2 \longrightarrow 2N_2 + 6H_2O$$



(C) 
$$2F_2 + 2H_2O \longrightarrow 4HF + O_2$$

**(D)** 
$$2AgNO_3 + H_2O_2 \longrightarrow 2Ag + 2HNO_3 + O_2$$

**35.** In the given redox reaction :

$$Cr_2O_7^{2-} + Fe^{2+} \longrightarrow Fe^{3+} + Cr^{3+}$$

1 mol of  $Cr_2O_7^{2-}$  oxidises:

(A) 1 mol of  $Fe^{2+}$ 

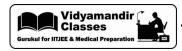
**(B)** 3 mol of  $Fe^{2+}$ 

(C) 4 mol of  $Fe^{2+}$ 

**(D)** 6 mol of  $Fe^{2+}$ 

**36.** The value of p, q, r, s, and t in the following redox reaction are :

$$pBr_2 + qOH^- \longrightarrow rBr^- + sBrO_3^- + tH_2O$$


|     | p | q | r | s | t |            | p | q | r | s | t | lacksquare |
|-----|---|---|---|---|---|------------|---|---|---|---|---|------------|
| (A) | 3 | 6 | 1 | 5 | 3 | <b>(B)</b> | 3 | 6 | 5 | 3 | 1 |            |
| (C) | 3 | 6 | 5 | 1 | 3 | (D)        | 3 | 5 | 1 | 6 | 3 |            |

**37.** I  $^-$  reduces  $IO_3^-$  to  $I_2^-$  and itself gets oxidised to  $I_2^-$  in acidic medium. Final reaction is:

(A) 
$$I^- + IO_3^- + 6H^+ \longrightarrow I_2 + 3H_2O$$

**(B)** 
$$I^- + IO_3^- \longrightarrow I_2 + O_3$$

(C) 
$$5I^- + IO_3^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$$



**38**.

|             | (A)                                                                                        | Reduced                                                                                                                                                                              |                        |                        |                                                               |                                                           |                        |                   |            |  |  |
|-------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------------------------------------------------------------|-----------------------------------------------------------|------------------------|-------------------|------------|--|--|
|             | <b>(B)</b>                                                                                 | Oxidised                                                                                                                                                                             |                        |                        |                                                               |                                                           |                        |                   |            |  |  |
|             | (C)                                                                                        | Converted into a complex compound containing both Sn and Hg                                                                                                                          |                        |                        |                                                               |                                                           |                        |                   |            |  |  |
|             | <b>(D)</b>                                                                                 | Converted into a chloro complex of Hg                                                                                                                                                |                        |                        |                                                               |                                                           |                        |                   |            |  |  |
| 39.         | One ga                                                                                     | gas bleaches the colour of flowers by reduction while the other by oxidation :                                                                                                       |                        |                        |                                                               |                                                           |                        |                   |            |  |  |
|             | (A)                                                                                        | ${\rm CO}$ and ${\rm Cl}_2$                                                                                                                                                          |                        |                        | <b>(B)</b>                                                    | $\mathrm{SO}_2$ and $\mathrm{Cl}_2$                       |                        |                   |            |  |  |
|             | (C)                                                                                        | $H_2S$ and $Br_2$                                                                                                                                                                    |                        |                        | (D)                                                           | $\ensuremath{\text{NH}_3}$ and $\ensuremath{\text{SO}_2}$ |                        |                   |            |  |  |
| <b>40</b> . | Which o                                                                                    | Which of the following changes require a reducing agent ?                                                                                                                            |                        |                        |                                                               |                                                           |                        |                   |            |  |  |
|             | (A)                                                                                        | $CrO_4^{2-} \longrightarrow Cr$                                                                                                                                                      | $r_2O_7^{2-}$          |                        | (B)                                                           | $BrO_3^- \longrightarrow BrO_3^-$                         | O <sup>-</sup>         |                   |            |  |  |
|             | (C)                                                                                        | $H_3AsO_3 \longrightarrow$                                                                                                                                                           | $\mathrm{HAsO}_3^{2-}$ |                        | (D)                                                           | $Al(OH)_3 \longrightarrow$                                | Al(OH) <sub>4</sub>    |                   |            |  |  |
| 41.         | N <sub>2</sub> + 3H                                                                        | $H_2 \longrightarrow 2NH_3$ .                                                                                                                                                        | In this r              | eaction, equivale      | nt weigh                                                      | t of N2 is:                                               |                        |                   | <b>(</b> ) |  |  |
|             | (A)                                                                                        | 4.67                                                                                                                                                                                 | <b>(B)</b>             | 28                     | (C)                                                           | 14                                                        | (D)                    | 2.33              | Ü          |  |  |
| <b>42</b> . | NaHC <sub>2</sub>                                                                          | O <sub>4</sub> is neutralise                                                                                                                                                         | ed by Na               | aOH. It can also       | be oxid                                                       | lised by KMnO <sub>4</sub>                                | (in aci                | dic medium). Ec   | quivalent  |  |  |
|             |                                                                                            | $HC_2O_4$ is neutralised by NaOH. It can also be oxidised by $KMnO_4$ (in acidic medium). Equivalent ght is related to molecular weight (M) of $NaHC_2O_4$ in these two reaction as: |                        |                        |                                                               |                                                           |                        |                   |            |  |  |
|             | (A)                                                                                        | M, M                                                                                                                                                                                 | (B)                    | 2M, 2M                 | (C)                                                           | $\frac{M}{2}$ , M                                         | (D)                    | $M, \frac{M}{2}$  | $\odot$    |  |  |
| 43.         | Cl <sub>2</sub> cha                                                                        | anges to Cl <sup>-</sup> and                                                                                                                                                         | d ClO i                | n cold NaOH. Th        | aOH. The equivalent weight of $\operatorname{Cl}_2$ will be : |                                                           |                        |                   | $\odot$    |  |  |
|             | (A)                                                                                        | M                                                                                                                                                                                    | (B)                    | $\frac{\mathrm{M}}{2}$ | (C)                                                           | $\frac{M}{3}$                                             | (D)                    | $\frac{2M}{3}$    |            |  |  |
| 44.         | Equival                                                                                    | ent weights of 1                                                                                                                                                                     | ${\rm KMnO_4}$         | in acidic mediur       | n, alkaliı                                                    | ne medium and                                             | neutral                | (dilute alkaline) | medium     |  |  |
|             | respectively are $\frac{M}{5}$ , $\frac{M}{1}$ , $\frac{M}{3}$ . Reduced products can be : |                                                                                                                                                                                      |                        |                        |                                                               |                                                           |                        |                   | $\odot$    |  |  |
|             | (A)                                                                                        | $\mathrm{MnO}_{2},\mathrm{MnO}_{4}^{2-},$                                                                                                                                            | $Mn^{2+}$              |                        | (B)                                                           | $MnO_2$ , $Mn^{2+}$ , 1                                   | $\mathrm{MnO_4^{2-}}$  |                   |            |  |  |
|             | (C)                                                                                        | $Mn^{2+}, MnO_4^{2-},$                                                                                                                                                               | $\mathrm{MnO}_2$       |                        | <b>(D)</b>                                                    | $\mathrm{Mn}^{2+}$ , $\mathrm{MnO}_2$ , $\mathrm{MnO}_2$  | ${\it M}$ nO $_4^{2-}$ |                   |            |  |  |
| <b>45</b> . | 1 mol o                                                                                    | f ferric oxalate is                                                                                                                                                                  | s oxidise              | d by x mol of Mr       | ${ m nO}_4^-$ in a                                            | cidic medium, x                                           | is:                    |                   | $\odot$    |  |  |
|             | (A)                                                                                        | $\frac{5}{6}$                                                                                                                                                                        | (B)                    | $\frac{6}{5}$          | (C)                                                           | 5                                                         | (D)                    | 6                 |            |  |  |

 $\mathsf{SnCl}_2$  gives a precipitate with a solution of  $\mathsf{HgCl}_2.$  In this process  $\mathsf{HgCl}_2$  is :